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The principal characteristics of jet penetration axe the appearance of free stream- 
lines at the sides of the jet and of a dividing streamline, which separates the jet 
and penetrated fluid. Kinematic analysis of such flow via free-streamline theory 
and the notched hodograph is developed with one unspecified parameter, the 
ratio of jet to counterstream velocity in the steady flow case. The kinetics of the 
problem, appearing when the jet and penetrated (or counterstream) fluid differ 
in density, is simply related to the kinematic solution via the square root of the 
density ratio. Experiments, both steady state and transient with several liquids, 
are presented which generally verify the theory. The experiments also yield 
information on the magnitude of the parameter and indicate its variation with 
the density ratio. 

1. Introduction 
Fluid jet penetration involves the dynamic interaction of a high velocity 

stream of fluid with a broader, slower-moving body of fluid into which or through 
which the jet moves. The penetration occurrence may appear as a transient 
phenomenon with the jet impinging on and then penetrating into an essentially 
quiescent body of liquid, or the penetrated fluid body may be moving towards the 
jet at just the proper speed so that a steady-state process appears. During the 
penetration process, the jet is deflected by this opposing fluid, which in deflecting 
the jet is also deformed. Thus, fluid from two different sources interacts and solid 
boundaries are not directly involved. In  the region of penetration, an interface or 
dividing streamline is formed between jet and penetrated fluid. This interface is 
sharply defined at the tip of the jet but becomes less distinct in the wake region 
of the deflected jet where mixing and mass transfer between the two regions 
occur. The main problem of jet penetration is to determine the shape of the inter- 
face and its location at subsequent intervals of time. The phenomenon is similar 
to the direct impingement of two jets; indeed, if one of the impinging jets is 
increased in width towards infinity, the process then becomes that of jet 
penetration. 

A jet may penetrate into a fluid of the same density (if not composition), into 
a fluid of different density, or even into a plastic medium. Early studies involved 
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the penetration of a fuel injection spray into air as reported by Miller & Beardsley 
(1936) and continued by Lee (1932) with experiments on the penetration into 
water and glycerine. Many stratified fluid flows appear in the form of jets of a 
heavier fluid flowing under a lighter one. Thus meteorologists are interested in the 
flow of cold air under warmer (lighter) air at a front, and in the flow of a mixture 
of loose snow or of dust in air. The oceanographer is interested in density currents 
in which sediment laden water flows down the canyons off the continentd shelf, 
or from stream into reservoirs. In  another entirely different area of interest, jet 
penetration theory was formulated during World War I1 in connection with the 
penetration of armour plate by the high velocity jet from a lined charge. Pre- 
sumably due to the high speed of action, the penetrated medium was successfully 
treated as a fluid. This work was reported by Birkhoff, MacDougall, Pugh & 
Taylor (1948) and Pack & Evans (1951) and later extended experimentally by 
Eichelberger (1956) and Singh (1957). Ehrich (1953) has analysed the penetration 
of jets obliquely into a stream, while Rao (1958) studied an air jet blowing into 
a counterflow of air with measurements of the mean flow and turbulence patterns. 
A jet of cooling fluid blowing forward from the nose of a body into super- and 
hypersonic flows has been considered and studied experimentally by Stalder & 
Inouye (1956), Warren (1960), Romeo & Sterrett (1963) and Baron & Alzner 
(1963). Recently, Wuest & von Trotha (1964) have employed an analysis similar 
to that presented in this paper to determine appropriate body contours for such 
applications. Interaction of forward blowing jets with the bow shock of a re-entry 
vehicle as a means of control was investigated by Charczenko & Hennessey (1961). 
In  another consideration Banks & Chandrasekhara (1963) studied the hole pro- 
duced in the surface of water by an impinging air jet. This study has been 
continued by Banks & Bhavamai (1965) with liquid jets. 

The present study, although furnishing information relevant to all of the above 
noted cases of jet penetration, is limited to the analytical and experimental study 
of incompressible fluid jet penetration during the period-or in the flow region- 
for which the penetrating and penetrated fluids are effectively separated by an 
interface, i.e. viscous or turbulent mixing across the dividing streamline is 
ignored. 

Examples of jet penetration are depicted in figure 1. Thus, in the fist stage of 
surface penetration (figure 1 a) ,  the jet as it moves through space encounters the 
surface of a liquid body. The tip of the jet is split and deflected back, and the 
surface of the liquid is deformed at the point of impact. As the jet continues to 
penetrate, the vertex of the interface (dividing streamline DS) between the two 
fluids moves progressively deeper into the body of fluid, as sketched in figure 1 b, 
with the jet now horizontal. Cavities defmed by the free streamlines (FS) are 
formed on either side of the deflected jet as it is turned back. Initially, these are 
open to the atmosphere, but, as penetration progresses, they collapse near the 
surface, and trapped vortices are established on either side of the jet. When the 
jet penetrates into a countersteam, it impinges directly into fluid moving in a 
direction opposite to that of the jet. The jet is split and deflected back, and the 
deflected portion is swept downstream with the counterflow. If the proper 
counterflow velocity U is chosen, the position of the interface DS is stationary. 
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The flow pattern is symmetrical about the axis of the jet. Realistically, the jet 
cannot originate at infinity, but a nozzle must be located reasonably close to the 
penetration zone. 

FIGURE 1. Examples of jet penetration flows: (a) near liquid surface, 
( b )  stages of unsteady penetration. 

2. Analytical flow model 
Analytical treatment of jet penetration flow requires a simplified model which 

adequately represents the physical occurrence. The following characteristics of 
the penetration process are used to develop such a model. 

(a )  No solid boundaries are involved in the flow. Although the jet is necessarily 
generated by a nozzle, this may be located out of the region of interest. 

( b )  Boundary or shear layers at the interfaces between the several fluids are 
unimportant, 

(c)  The lateral spread of the dividing streamline is limited. 
The development of a flow model is based on the hydrodynamic theory of ideal 

fluids. It is assumed that the fluids involved are inviscid and incompressible and 
that gravity and surface tension forces may be neglected. In  the analysis, the 
flow is taken to be plane two-dimensional; the problem may thus be treated by the 
powerful methods of complex variables and conformal mapping. 

The penetration process as conceived in this model is shown in the z-plane of 
figure 2. A plane two-dimensional jet originates from a source at positive infinity 
and penetrates into a counterstream originating at minus infinity. The jet 
velocity is taken as V directed to the left and the counterstream velocity as U to 
the right. A stagnation point occurs at the origin 0; the centre streamlines in the 
jet and the stream divide to form the jet-stream interface (dividing streamline 
DS) OC. A recirculation region appears on either side of the jet and is bounded by 
free streamline (PAS') BMNA.  With this flow model, the problem now is to deter- 
mine the shape of the streamlines and the pressure and velocity fields in the jet 
and the counterstream. Birkhoff & Caywood (1949) solved this problem via the 
Helmholtz free-streamline theory. Strict adherence to this theory admits only 
one possible situation; the velocity of the jet must be equal to the velocity of the 
stream, i.e. V = U. In  the resulting flow pattern, the jet-stream interface (DS) 
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spread is unlimited, and an infinitely wide cavity or dead water region (W = 00) 

occurs. This contradicts the experimental observations of the penetration 
phenomenon, characteristics (c) above. As in the analysis of cavity flows past bluff 
bodies (see Robertson 1965, p.471), a more realistic solution is obtained by 
allowing the free streamline velocity to  differ from that of the uniform stream. 
In the present application, such a flow model yields a finite spread of the DX, as 
desired. 

The free streamline then becomes parallel to the horizontal axis at point N ;  
along the streamline from B to N the speed is taken constant and equal to the 

z-plane 

Counterstream 

U =  1/K 

D D 0 

A FS $ = - n  B 

- iv 
A w-plane 

t-plane 7-plane t : y,,, 
- 4-1 

D' A+ 0 0- 
0 B,D B, D N A,C, D' 

FIGURE 2. Jet penetration depiction in the several mapping planes. 

magnituab df the jet velocity, 77. At infinity downstream, however, the stream- 
lines in the external flow become parallel, and the velocity along F X  at point A 
must be equal to U ,  the approach velocity of the counterstream. Thus, from N to 
A along the parallel segment of the free streamline, the velocity must decrease 
from V to U .  Physically, this decrease in velocity is attributed to the effects of 
viscosity and turbulence in the wake region, as suggested by Roshko (1954). 
Specifically, the notched hodograph, or dissipation, model is adopted for this 
analysis as detailed in the following paragraphs. 

The flow in the physical plane is symmetrical about the real axis, and only the 
upper half is considered in the mapping. To further facilitate the mapping, the 
velocity is normalized so that V = 1,  and the half-width of the jet is taken to be 
At2 = n. This normalization in no way reduces the generality of the solution. Since 
U is less than V ,  we let V / U  = l / U  = K. Representation of the problem in the 
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several mapping planes involved is indicated in figure 2. Certain characteristics 
of the flow in the physical x-plane are known. Thus, at negative and positive 
infinity the streamlines of the counterstream are parallel, and the velocity is 
equal to U = l/K. At positive infinity, the width A = 2n of the incoming jet is 
known, and its velocity is V = 1. The deflected portion of the jet reaches velocity 
U = l /K at positive infinity. Along the free streamline from B to N ,  the velocity 
is constant in magnitude and is equal to the jet velocity. From N to A the direc- 
tion of the free streamline is parallel to the axis of the jet, but the velocity 
magnitude decreases from V = 1 to U = l/K. 

From the characteristics of the flow in the x-plane, the free streamline and the 
dividing streamline can be mapped in the complex potential plane, Q = g5 + i$. 
The value of @ is taken to be zero along the symmetry and DS streamlines, 
D'OD and OC respectively. These map into the real axis of the complex potential 
plane with D'OD bent around a semi-infinite slit on the negative real axis. Along 
the free streamline BMNA,  @ = -n. Thus, in the Q-plane the flow consists of 
the upper half plane and a lower strip of width n. The hodograph plane, of the 
complex velocity w = u-iv, is also easily mapped. The constant-velocity free 
streamline BMN maps into a semicircle of unit radius with the complete flow 
field appearing inside it. Streamlines D'OD and the segment N A  of the free 
streamline form the real axis of the w-plane. The free streamline segment N A  
appears as a, short slit. in the boundary of the semicircle. This type of hodograph 
is thus often referred to as a 'notched hodograph'. 

The Q-plane can be mapped on to the upper half of an auxiliary t-plane, shown 
at the bottom of figure 2, via the Schwarz-Christoffel transformation which gives 

Q = t+ln( l - t ) .  (1) 

In  the w-plane the flow is inside the semicircle; the interior of this can be mapped 
on the upper half of a r-plane, also shown in figure 2, by the well known 
Joukowsky transformation, thus 

27 = w+ (l/w). (2) 

At points A ,  C, D' the complex velocity is real and equal to U .  Since U = 1/K, 
these points are located on the real axis at 

K2+ 1 h = -  -+K =- 
2 K  '( ' ) 2K (3) 

The linear fractional Moebius transformation is used to complete the solution 

(4) 
h+l by relating t and r .  

t =  -~ 

The mapping is complete, the functions Q = Q(w) and x = z(w) can now be found 
by substitution. Thus from (l), (2) and (4) 

r - h '  

(w + 1 ) 2  

(W-K)(W-l/K) 
Q(w) = - 

This determines the complete flow pattern in the hodograph plane. 
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To determine the streamlines in the z-plane, the z = z(w) relation must be 
found. From (1) 

t 
t -  1 

dQ = -at. 

By substituting the expressions for t and T from (4) and (2) and noting w = dQ/dx 

Integration and simplification leads to the following equation: 

which maps the w-plane onto the z-plane. This, along with ( 5 ) ,  constitutes the 
solution for the flow in the physical plane. It has not’ been possible to eliminate w 
between ( 5 )  and (7) to obtain Q(z) and the equations for Q(w) and z(w) are thus 
retained as representing the solution in parametric form. 

3. Comparison with Wuest & von Trotha solution 
This same problem has been solved by Wuest & von Trotha (1964), but for 

a more general occurrence. Their solution is achieved via a technique dubbed the 
‘Blasius-Prandtl hodograph method’ (see Robertson 1965, pp. 352,445),in which 
identification of the singularities in the hodograph plane is followed by the inte- 
gration z = (l /w) dQ to find the z( Q) relation. This same method was also out- 
linedin the more complete work (Hopkins 1962) upon which this paper is based. 
In  the Wuest & von Trotha work, a doubly notched hodograph is employed so 
that not only is the velocity magnitude along the free streamline (represented by 
the radius of the circle) allowed to exceed the velocity U of the approach counter- 
stream, but also the issuing jet velocity is considered to be less in magnitude than 
that along the free streamline. This requires the fluid speed along the FS to 
increase between B and M to the free-streamline magnitude just as between 
N and A it decreases to U.  The latter expectation or requirement is common to 
the present dissipation-model notched hodograph and usually rationalized as 
resulting from energy dissipation in the flow downstream of the immediate region 
of interest. However, it  is not possible to justify the velocity increase between 
B and M for the doubly notched hodograph, since this requires an energy increase 
in the flow direction. Thus, the more general nature of the Wuest & von Trotha 
solution is physically unrealistic and their solution indications involving this 
velocity increase are not significant. 

When the Wuest & von Trotha analysis is limited to the single notch, their 
velocity ratio T{/V, is unity. In  that case their figure 12 indicates the variation in 
the x locations of the leading points of the DX and FS streamlines z15 summarized 
for the present study in figure 3. Por the range in K considered here, their 
figure 12 indicatesresults a t  K values of about 1.05,1.43 and 2.0 which agree with 
the theoretical values of the present study to within the precision with which it 
was possible to read their figure. 
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4. Some calculated flow patterns 
The complete flow field, including the shapes of the dividing streamline DS and 

free streamline FS,  is obtainable from ( 5 )  and (7) .  The FS is of particular interest 
when the jet is being used at the front of a body, since this streamline defines a 
contour for the body nose which will maintain a constant pressure along the 
surface. Similarly, DS defines the penetration interface of jets shooting into other 
fluids. 

1.2 

1.1 

0.9 

1.0 1.4 1.8 2.2 2.6 
K 

FIGURE 3. Variation of the leading distance LlA with parameter K. 

To plot the streamlines in the physical plane, the flow pattern in the w-plane 
must first be determined. The expression for the complex potential (5) is broken 
up into its real and imaginary parts and the imaginary part is 

yi = arctan 1 - 2 ( u 2  - v 2  - 2hu + 1) (v + uv) - 2 ( u 2  - v 2  + 2u + 1) (hv - uv) 
( u 2 -  v 2 +  2u+ 1) ( u 2 -  212- 2hu+ 1) - 4(v +uv) (hv - uv) 

2(h+ 1) [ v ( z c 2 - v 2 -  2hu+ 1) + Zu(hv - uv] 
( ~ 2 -  ~ 2 -  2 h ~ ) ~  + 4 ( h ~  - UV)' 

[ 
* (8) + 

For a constant value of yi, the equation relates the velocity components, u and v, 
along the streamline. A different flow pattern is obtained for each value of the 
parameter K via the factor h as specified by (3). 

The above equation for $ = $(u, v) is implicit in u and v, and it is not possible 
to assign a value to yi and solve directly for the values of u and v which satisfy it. 
Instead, an iterative, or graphical procedure was used to find values of u and v 
at a series of points along each Streamline. A hodograph plot of the streamlines 
for K = 2 is shown in figure 4. Once the velocity components, u and 'u, along the 
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streamlines have been determined, their shape in the physical plane may be 
found. From (7), 

- 2(v + uv) (u2 - 212 - 2 h u  + 1) - 2(hv -- uv) ( u 2  - v2 + 2% + 1 )  
(u2 - ~2 + 3u + 1) (u2 - w2 - 2 h ~  + 1 )  - 4 ( ~  + U V )  (hv - U V )  

- arctan 

- v  
4 

0 0.2 0.4 0.6 0.8 1.0 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 

+ = - 3.14 

- 1.0 1 

FIGURE 4. Streamlines of flow in hodograph plane for K = 2. 
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FIGURE 5. Jet penetration streamlines and isovels for flow of K = 1-6. 
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The resulting streamline patterns are presented in figures 5 and 6 for K values 
of 1.6 and 2.5. The x and y scales are here made dimensionless by dividing each 
scale by the full jet width A and the value of q9 on each streamline similarly is 
divided by A. 
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FIGURE 6. Jet penetration streamlines and isovels for flow of K = 2.5. 
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FIGTTRE 7. Comparison of streamlines at  different values of parameter K .  

The most significant streamlines of the flow are the free streamline, FAY, and the 
dividing streamline, DX. The shape of these streamlines for all K values con- 
sidered is shown in figure 7, together with the free streamline for K = 1 as 
obtained by Birkhoff & Caywood (1949). The effect of the value of K on the 
cavity width is evident from the flow patterns. The ratio of the cavity width W 
to the jet width A is given by 

K +  1 
I+-- 

W 
A K -  1' 
-=  
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The variation in cavity width with K is shown in the following table. 

K =  1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 
WIA = co 12 7.0 5.3 4.5 4.0 3.3 3.0 

TABLE 1. Variation in cavity width with parameter K 

5. Effect of fluid density 
The analysis considered up to this point has been purely kinematic, and fluid 

density enters only when the pressure variation in the flow is desired. Th.is simply 
results from the assumption that the densities of both the jet and the counter- 
stream are the same. The solution is easily extended t o  fluids of different densities, 
however. In  such cases, the dividing streamline DS separates the two liquids as 
a streamline of density discontinuity. 

The flows are irrotational and Bernoulli’s equation applies throughout each 
region. Consideration of the mutual stagnation point 0, indicates that the 
Bernoulli constant (i.e. the stagnation pressure) is identical for both regions. 
More specifically the pressures on either side of the dividing streamline must be 
equal; thus 

where the subscript 1 refers to the jet and subscript 2 the counterstream. By 
definition of the stream function, q = a@/an with n the normal to the streamline. 
This expression is substituted into (1 1) and integrated, whence 

($2)DS = (PllPZP (P1)DS.  

This relates $2 and $l along the dividing streamline. Now if $ is continuous 
throughout each region there is no limitation to the area near the dividing 
streamline, thus, throughout the flow region 

$2 = (PlIPZ)*$l. (12) 

It follows directly that the velocity magnitude is also changed by square root of 
the density ratio, 

This general result has been indicated by Birkhoff (1948), Wuest & von Trotha 
(1964) and Robertson (1965, p. 162). 

If a flow exists with jet and counterstream fluids of different density, the 
streamline pattern is the same as if the fluids were of the same density. Thus 
$l can be obtained from the kinematic solution, that is, with the density the 
same throughout both regions. Once the appropriate value of K has been deter- 
mined, the streamline pattern is known. The stream function, $z, which describes 
the flow of the counterstream fluid, is related to $1 by (12) and the velocities in 
the counterstream are merely changed by the factor (pl/pz)3 from those given by 
the kinematic solution. The velocity of the approaching stream is then 

Isovels of the flow pattern (figures 5-7) are still lines of constant pressure. In  the 
jet fluid region the velocity magnitude of the isovels remains unaltered, but in 
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the stream fluid region the velocity magnitude represented by each isovel is 
modified by the factor (p1/p2)*. A discontinuity in tangential velocity across the 
dividing streamline is thus evident. 

6. Experimental studies 
Analysis of the penetration problem involves the parameter K which is not 

defined and can only be determined by experimental methods. Experimental 
studies were conducted to obtain information on possible values of this para- 
meter. The test conditions were brought as close as possible to the assumptions 
of the analytical solution. Thus, it was intended that the effects of gravity be 
minimized and that the flow be approximately two-dimensional. Two types of 
experiment were conducted corresponding to steady jet penetration into counter- 
stream and unsteady jet penetration into fixed fluid. 

In  the first type of study, a two-dimensional uniform stream was generated by 
allowing water to flow between two parallel plates spaced one inch apart 
vertically. The upper plate was glass, and the lower plate carried a Pitot-static 
tube which could be positioned at any point in the flow field. The plates were 
horizontal so that the jet spread in a horizontal plane and the effects of gravity 
on the flow pattern were minimized. A nozzle inserted between the plates dis- 
charged a jet of width A = Qin. directly into an approaching stream. The test 
section (Sin. wide) was bounded on both sides by quiescent fluid to simulate a 
stream of infinite width. The interface between the jet and the stream was made 
visible by use of black dye in the jet fluid; the free streamlines were marked by 
concentrated streams of dye released on each side of the nozzle exit. Photographs 
of the flow pattern obtained through the glass plate served to indicate the shape 
and position of the DS and FS streamlines although some diffusion of the dyes 
into the surrounding fluid occurred. 

These tests employed water for both the jet and counterstream fluids at jet 
velocities of 4, 6, 8, 10 and 12ft./sec. For each jet velocity the counterstream 
velocity was adjusted to give velocity ratios K of 1.2, 1.4, 1.6, . . . until the flow 
pattern became unstable. At low velocity ratios, the interface appeared close to 
the nozzle exit, and flow was greatly influenced by the presence of the nozzle. As 
the velocity ratio K was increased, the interface moved further away from the 
nozzle until the flow pattern became unsteady with the jet wagging from side to 
side. This instability suggests that the nozzle then had only minor influence on 
the flow, so that the situation was then comparable to that of a jet originating at 
infinity, as assumed in the analysis. Over the range of jet velocities studied, the 
values of K thus found scattered between 1-71 and 1-77 with an average value of 
1.74. This value for the parameter K is the same order of magnitude as that of 1.54 
established by Roshko (1954) for the normal plate; of course, there is no parti- 
cular reason that the values should be the same for the two flow cases. 

The general features of the flow agreed well with the theoretical flow model as 
may be seen in the photograph of figure 8*, plate 1. The dividing streamline 
between the jet fluid and the stream fluid was well defined with very little mixing 

* Some misleading shadows appear in this figure. 
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along the interface until it  became nearly parallel with the nozzle axis. The free 
streamlines of the jet were in contact with a ‘dead water’ region. A large eddy 
and considerable mixing of the jet fluid into these regions resulted, in contrast 
to the theoretical model. The dividing streamline which formed the interface 
became parallel to the axis a few nozzle widths downstream of the stagnation 
point. The final width, from the five tests at K = 1-6, was 5.8 times the jet width, 
not far from the value of 5-3 as predicted (table 1). 

The velocity was measured a t  a series of points along the centreline of the test 
section. When normalized by the jet velocity, nearly identical results were 
obtained for the five levels of jet velocity tested. The variation for a velocity 
ratio of 1.6 is indicated in the lower part of figure 8, where each data point 
represents an average of the five tests. Due to the fluctuation in the position of 
the stagnation point, accurate velocity measurements were not obtained in the 
stagnation region. In  the counterstream, a good agreement between theoretical 
and experimental velocity appears. In  the jet region the correlation is not as 
good, and shows that the nozzle still has an appreciable effect on the velocities 
within the jet. 

Specific Density ratio. 
Penetrated weight Jet  to Viscosity 

fluid (lb./ft.8) penet,rated fluid centipoises 

Gasoline 44.00 1.42 0-43 
Castor oil 59-70 1.04 986 
Water 62.31 1.00 1.00 
Brine ‘70.33 0.887 1.60 
Glycerine 78.60 0.794 1490 
Carbon tetrachloride 99-60 0.626 0.969 

TABLE 2. Some properties of penetrated liquids used with water jets fluids 

For the second type of experiment, the unsteady case of jet penetration was 
studied by taking motion pictures of water shooting vertically into bodies of 
initially still liquid. The jet had an initial width A of Qin. and was injected from 
a nozzle located 2.5in. above the free surface of the penetrated liquid contained 
between two vertical glass plates (16 by 20in.) spaced l in.  apart. A water jet 
velocity of = 10ft./sec was produced by a suitable head of water in an upper 
tank separated from the nozzle by a solenoid-operated, quick-opening valve. 
Motion pictures taken a t  2000 frameslsec served to establish the jet speed before 
it struck the penetrated liquid and to observe the penetration development. Six 
different liquids, whose relevant basic properties (a.t the temperature of test) are 
indicated in table 2,  were employed to vary the density ratio pJp2 of the jet to 
penetrated fluid from 0.6 to 1.4. Two of them had viscosities much greater than 
the others; since no significant divergences from the trend found with the less 
viscous fluids appeared, an insensitivity of the phenomenon to viscosity is sug- 
gested. In  all cases, the depth of penetration was found to increase linearly with 
time for depths as great as 15 times the jet width. Relevant to the steady-state 
analysis, this penetration velocity is simply 

v, = u, 
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while the jet velocity is 

Thus, the jet velocity corresponding to the steady case analysed is V = 

v =  I v+u. 
- V, 

whence by (14) 

Thus the parameter K is determined from the V, observations as 

K = U ( - - ) .  v-v 
v, 

2.0 

1.5 

0 Jet into still liquid 
Jet into counterflow 0.5 

0 0.5 10 1.5 2.0 
P2IP1 

FIGURE 9. Parameter K as a function ratio of density of penetrated to jet fluid. 

For a water jet velocity 4 of 10ft/sec, the observed penetration velocities V, 
varied from 4-84ft/sec in gasoline to 3.08 in carbon tetrachloride, and the K 
values thus ranged from 1.28 to 1.77. Since the values of this fundamental 
parameter seem to increase with the inverse of the density ratio and a unity value 
holds some rationale for an inverse density ratio of zero (as a liquid jet into air), 
a plot on this basis is presented in figure 9. 

Included in figure 9 is the value of K obtained in the steady flow test described 
earlier. This value is seen to lie significantly above the data for a jet into still fluid. 
There are two possible reasons for this difference. In  the steady flow case the 
nozzle was closer to the dividing streamline, and may have influenced the flow. 
The more significant effect, however, is that in the unsteady flow case the space 
outside the jet was free (actually air filled) whereas in the steady flow study it 
was filled with water. 

The unsteady flow jet penetration studies also yielded information on the shape 
of the dividing and free streamlines DS and FS for the several density ratios. 
Some comparisons of the contours of these two important streamlines with 
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theoretical predictions are given in figure 10 where it is seen that the agreement 
is quite good, considering the difficulty of exact determination of such stream- 
lines from frames of movie film. 

Vp = 0.48 5 Vp = 0.31 
Density ratio p2 /p1  = 0.7 Density ratio p2/p1 = 1.6 

FIGURE 10. Some observed unsteady flow jet boundaries. 

7. Conclusions 
The most significant feature of the steady-state penetration process with fluids 

of equaI density is that the jet velocity is considerably greater than that of the 
opposing stream velocity. In  the unsteady case of surface penetration, the cor- 
responding condition is that the velocity of penetration is less than one half the 
jet velocity. The effect of this velocity deficit is to limit the spread of the jet fluid 
to a finite region along the jet axis. In  the analysis, the velocity deficit is 
accounted for by an empirical parameter, K .  Once it suitable value of K has been 
found, the theory yields velocity and pressure fields and a streamline pattern 
which correspond reasonably well with experimental observations. For the low 
range of velocities tested, K does not appear to be sensitive to the magnitude of 
the jet velocity. 

The conditions occurring in the region outside the free streamline influence the 
value of K.  In particular, the value of K obtained when the ‘dead water ’ region 
occurs appears to be significantly different from that found with liquids when 
a gas filled cavity exists. In  the surface penetration tests (gas-filled cavity) a 
K value of 1-4 was obtained for the equal density case compared to 1.7 when the 
cavity was liquid filled. These results suggest that the velocity dissipation along 
the free streamline is an important factor in determining the flow pattern. 

When the jet and stream fluids have different densities, the parameter K 
increases linearly with the ratio of the density of the penetrated to jet fluid. The 
flow pattern and the pressure field, for a given value of K ,  are predicted by theory 
to be the same as for the equal density case, but in the counterstream, or pene- 
trated fluid region, the velocity components are changed by the square root of 
the density ratio, stream fluid to jet fluid. A velocity discontinuity then exists a t  
the separating streamline, and mutual boundary layers will develop along the 
interface which were not accounted for in the theory. 
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FIGURE 8. Flow pattern and velocity variation along centreline for 
connterflow at K = 1.6. 
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